Given a continuous map s ↦ μs, from a compact metric space into the space of nonatomic measures on T, we show the existence of a family (Aα s)α∈[0,1], increasing in α and continuous in s, such that μs(Aα s)=αμs(T)(α∈[0,1]

Cellina, A., Colombo, G., Fonda, A. (1988). A continuous version of Liapunov's convexity theorem. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 5(1), 23-36 [10.1016/S0294-1449(16)30353-5].

A continuous version of Liapunov's convexity theorem

CELLINA, ARRIGO;
1988

Abstract

Given a continuous map s ↦ μs, from a compact metric space into the space of nonatomic measures on T, we show the existence of a family (Aα s)α∈[0,1], increasing in α and continuous in s, such that μs(Aα s)=αμs(T)(α∈[0,1]
Articolo in rivista - Articolo scientifico
Liapunov's convexity theorem; constant selection
English
1988
5
1
23
36
none
Cellina, A., Colombo, G., Fonda, A. (1988). A continuous version of Liapunov's convexity theorem. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 5(1), 23-36 [10.1016/S0294-1449(16)30353-5].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/19446
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
Social impact