We prove the existence of continuous approximate selections of upper semicontinuous maps from a separable locally compact metric space S into the decomposable subsets of L1(T, Z). We then extend a fixed point theorem of Kakutani to upper semicontinuous maps with decomposable values

Cellina, A., Colombo, G., Fonda, A. (1986). Approximate selections and fixed points for upper semicontinuous maps with decomposable values. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 98(4), 663-666 [10.1090/S0002-9939-1986-0861771-6].

Approximate selections and fixed points for upper semicontinuous maps with decomposable values

CELLINA, ARRIGO;
1986

Abstract

We prove the existence of continuous approximate selections of upper semicontinuous maps from a separable locally compact metric space S into the decomposable subsets of L1(T, Z). We then extend a fixed point theorem of Kakutani to upper semicontinuous maps with decomposable values
Articolo in rivista - Articolo scientifico
Kakutani's fixed point theorem; convexity; continuous approximate selections; separable locally compact metric space
English
1986
98
4
663
666
none
Cellina, A., Colombo, G., Fonda, A. (1986). Approximate selections and fixed points for upper semicontinuous maps with decomposable values. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 98(4), 663-666 [10.1090/S0002-9939-1986-0861771-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/19443
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
Social impact