We prove the existence of continuous approximate selections of upper semicontinuous maps from a separable locally compact metric space S into the decomposable subsets of L1(T, Z). We then extend a fixed point theorem of Kakutani to upper semicontinuous maps with decomposable values
Cellina, A., Colombo, G., Fonda, A. (1986). Approximate selections and fixed points for upper semicontinuous maps with decomposable values. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 98(4), 663-666 [10.1090/S0002-9939-1986-0861771-6].
Approximate selections and fixed points for upper semicontinuous maps with decomposable values
CELLINA, ARRIGO;
1986
Abstract
We prove the existence of continuous approximate selections of upper semicontinuous maps from a separable locally compact metric space S into the decomposable subsets of L1(T, Z). We then extend a fixed point theorem of Kakutani to upper semicontinuous maps with decomposable valuesFile in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.