We study the behavior of eigenvalues of a magnetic Aharonov-Bohm operator with non-half-integer circulation and Dirichlet boundary conditions in a planar domain. As the pole is moving in the interior of the domain, we estimate the rate of the eigenvalue variation in terms of the vanishing order of the limit eigenfunction at the limit pole. We also provide an accurate blow-up analysis for scaled eigenfunctions and prove a sharp estimate for their rate of convergence.

Abatangelo, L., Felli, V., Noris, B., Nys, M. (2018). Estimates for eigenvalues of Aharonov-Bohm operators with varying poles and non-half-integer circulation. ANALYSIS & PDE, 11(7), 1741-1785 [10.2140/apde.2018.11.1741].

Estimates for eigenvalues of Aharonov-Bohm operators with varying poles and non-half-integer circulation

Abatangelo, L;Felli, V;Noris, B;Nys, M
2018

Abstract

We study the behavior of eigenvalues of a magnetic Aharonov-Bohm operator with non-half-integer circulation and Dirichlet boundary conditions in a planar domain. As the pole is moving in the interior of the domain, we estimate the rate of the eigenvalue variation in terms of the vanishing order of the limit eigenfunction at the limit pole. We also provide an accurate blow-up analysis for scaled eigenfunctions and prove a sharp estimate for their rate of convergence.
Articolo in rivista - Articolo scientifico
Aharonov-Bohm operators; Almgren monotonicity formula; Spectral theory;
Aharonov–Bohm operators, Almgren monotonicity formula, spectral theory
English
2018
11
7
1741
1785
reserved
Abatangelo, L., Felli, V., Noris, B., Nys, M. (2018). Estimates for eigenvalues of Aharonov-Bohm operators with varying poles and non-half-integer circulation. ANALYSIS & PDE, 11(7), 1741-1785 [10.2140/apde.2018.11.1741].
File in questo prodotto:
File Dimensione Formato  
apde-published.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/192175
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
Social impact