We study here the error of numerical integration on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Marcinkiewicz–Zygmund inequality and ad hoc definitions of function spaces on metric measure spaces. The same techniques are used to prove the existence of point distributions in metric measure spaces with small Lp discrepancy with respect to certain classes of subsets, for example, metric balls.

Brandolini, L., Chen, W., Colzani, L., Gigante, G., Travaglini, G. (2019). Discrepancy and Numerical Integration on Metric Measure Spaces. THE JOURNAL OF GEOMETRIC ANALYSIS, 29(1), 328-369 [10.1007/s12220-018-9993-6].

Discrepancy and Numerical Integration on Metric Measure Spaces

Colzani, L.;Travaglini, G.
2019

Abstract

We study here the error of numerical integration on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Marcinkiewicz–Zygmund inequality and ad hoc definitions of function spaces on metric measure spaces. The same techniques are used to prove the existence of point distributions in metric measure spaces with small Lp discrepancy with respect to certain classes of subsets, for example, metric balls.
Articolo in rivista - Articolo scientifico
Discrepancy; Metric measure spaces; Numerical integration;
Discrepancy, Numerical integration, Metric measure spaces
English
14-feb-2018
2019
29
1
328
369
reserved
Brandolini, L., Chen, W., Colzani, L., Gigante, G., Travaglini, G. (2019). Discrepancy and Numerical Integration on Metric Measure Spaces. THE JOURNAL OF GEOMETRIC ANALYSIS, 29(1), 328-369 [10.1007/s12220-018-9993-6].
File in questo prodotto:
File Dimensione Formato  
2019 BCCGT Measure Spaces.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 654.89 kB
Formato Adobe PDF
654.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/189872
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
Social impact