The authors study the use of the virtual element method (VEM for short) of order k for general second order elliptic problems with variable coefficients in three space dimensions. Moreover, they investigate numerically also the serendipity version of the VEM and the associated computational gain in terms of degrees of freedom.

Beirão Da Veiga, L., Brezzi, F., Dassi, F., Marini, L., Russo, A. (2018). Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions. CHINESE ANNALS OF MATHEMATICS SERIES B, 39(2), 315-334 [10.1007/s11401-018-1066-4].

Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions

Beirão Da Veiga, L
;
Dassi, F;Russo, A
2018

Abstract

The authors study the use of the virtual element method (VEM for short) of order k for general second order elliptic problems with variable coefficients in three space dimensions. Moreover, they investigate numerically also the serendipity version of the VEM and the associated computational gain in terms of degrees of freedom.
Articolo in rivista - Articolo scientifico
Linear elliptic problems; Polyhedral decompositions; Serendipity; Virtual element methods; Mathematics (all); Applied Mathematics;
English
2018
39
2
315
334
none
Beirão Da Veiga, L., Brezzi, F., Dassi, F., Marini, L., Russo, A. (2018). Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions. CHINESE ANNALS OF MATHEMATICS SERIES B, 39(2), 315-334 [10.1007/s11401-018-1066-4].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/189862
Citazioni
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
Social impact