We prove the existence of a solution to the semirelativistic Hartree equation-Δ + m2u + V(x)u = A(x)(W ∗ |u|p)|u|p-2u under suitable growth assumption on the potential functions V and A. In particular, both can be unbounded from above.

Secchi, S. (2018). Existence of solutions for a semirelativistic Hartree equation with unbounded potentials. FORUM MATHEMATICUM, 30(1), 129-140 [10.1515/forum-2017-0006].

Existence of solutions for a semirelativistic Hartree equation with unbounded potentials

Secchi, S
2018

Abstract

We prove the existence of a solution to the semirelativistic Hartree equation-Δ + m2u + V(x)u = A(x)(W ∗ |u|p)|u|p-2u under suitable growth assumption on the potential functions V and A. In particular, both can be unbounded from above.
Articolo in rivista - Articolo scientifico
Hartree equationFractional Sobolev spaces;
Hartree equationFractional Sobolev spaces; Mathematics (all); Applied Mathematics
English
2018
30
1
129
140
none
Secchi, S. (2018). Existence of solutions for a semirelativistic Hartree equation with unbounded potentials. FORUM MATHEMATICUM, 30(1), 129-140 [10.1515/forum-2017-0006].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/189427
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact