Let R be a ring with 1 and En(R) be the subgroup of GLn(R) generated by the matrices I + reij, r ∈ R, i ≠ j. We prove that the subgroup Pn, n̄, of En+n̄(R) consisting of the matrices of shape (A0BĀ), where A ∈ En(R), Ā ∈ En̄,(R) and B ∈ Matn, n̄,Ä(R), is (2, 3, 7)-generated whenever R is finitely generated and n, n̄ are large enough.

DI MARTINO, L., Tamburini, M. (2001). On $(2,3,7)$-generation of maximal parabolic subgroups. Special issue on group theory. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 71(2), 187-199.

On $(2,3,7)$-generation of maximal parabolic subgroups. Special issue on group theory

DI MARTINO, LINO GIUSEPPE;
2001

Abstract

Let R be a ring with 1 and En(R) be the subgroup of GLn(R) generated by the matrices I + reij, r ∈ R, i ≠ j. We prove that the subgroup Pn, n̄, of En+n̄(R) consisting of the matrices of shape (A0BĀ), where A ∈ En(R), Ā ∈ En̄,(R) and B ∈ Matn, n̄,Ä(R), is (2, 3, 7)-generated whenever R is finitely generated and n, n̄ are large enough.
Articolo in rivista - Articolo scientifico
Hurwitz groups; parabolic subgroups; triangle groups
English
2001
71
2
187
199
none
DI MARTINO, L., Tamburini, M. (2001). On $(2,3,7)$-generation of maximal parabolic subgroups. Special issue on group theory. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 71(2), 187-199.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18764
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
Social impact