The photoactivity of methanol adsorbed on the anatase TiO2 (101) surface was studied by a combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations. Isolated methanol molecules adsorbed at the anatase (101) surface show a negligible photoactivity. Two ways of methanol activation were found. First, methoxy groups formed by reaction of methanol with coadsorbed O2 molecules or terminal OH groups are photoactive, and they turn into formaldehyde upon UV illumination. The methoxy species show an unusual C 1s core-level shift of 1.4 eV compared to methanol; their chemical assignment was verified by DFT calculations with inclusion of final-state effects. The second way of methanol activation opens at methanol coverages above 0.5 monolayer (ML), and methyl formate is produced in this reaction pathway. The adsorption of methanol in the coverage regime from 0 to 2 ML is described in detail; it is key for understanding the photocatalytic behavior at high coverages. There, a hydrogen-bonding network is established in the adsorbed methanol layer, and consequently, methanol dissociation becomes energetically more favorable. DFT calculations show that dissociation of the methanol molecule is always the key requirement for hole transfer from the substrate to the adsorbed methanol. We show that the hydrogen-bonding network established in the methanol layer dramatically changes the kinetics of proton transfer during the photoreaction.

Setvin, M., Shi, X., Hulva, J., Simschitz, T., Parkinson, G., Schmid, M., et al. (2017). Methanol on anatase TiO2 (101): Mechanistic insights into photocatalysis. ACS CATALYSIS, 7(10), 7081-7091 [10.1021/acscatal.7b02003].

Methanol on anatase TiO2 (101): Mechanistic insights into photocatalysis

Di Valentin, C
;
2017

Abstract

The photoactivity of methanol adsorbed on the anatase TiO2 (101) surface was studied by a combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations. Isolated methanol molecules adsorbed at the anatase (101) surface show a negligible photoactivity. Two ways of methanol activation were found. First, methoxy groups formed by reaction of methanol with coadsorbed O2 molecules or terminal OH groups are photoactive, and they turn into formaldehyde upon UV illumination. The methoxy species show an unusual C 1s core-level shift of 1.4 eV compared to methanol; their chemical assignment was verified by DFT calculations with inclusion of final-state effects. The second way of methanol activation opens at methanol coverages above 0.5 monolayer (ML), and methyl formate is produced in this reaction pathway. The adsorption of methanol in the coverage regime from 0 to 2 ML is described in detail; it is key for understanding the photocatalytic behavior at high coverages. There, a hydrogen-bonding network is established in the adsorbed methanol layer, and consequently, methanol dissociation becomes energetically more favorable. DFT calculations show that dissociation of the methanol molecule is always the key requirement for hole transfer from the substrate to the adsorbed methanol. We show that the hydrogen-bonding network established in the methanol layer dramatically changes the kinetics of proton transfer during the photoreaction.
Articolo in rivista - Articolo scientifico
Anatase; DFT; Methanol; Photocatalysis; STM; TiO; 2; TPD; XPS;
Anatase; DFT; Methanol; Photocatalysis; STM; TiO2; TPD; XPS; Catalysis
English
2017
7
10
7081
7091
open
Setvin, M., Shi, X., Hulva, J., Simschitz, T., Parkinson, G., Schmid, M., et al. (2017). Methanol on anatase TiO2 (101): Mechanistic insights into photocatalysis. ACS CATALYSIS, 7(10), 7081-7091 [10.1021/acscatal.7b02003].
File in questo prodotto:
File Dimensione Formato  
10281-187336.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 5.98 MB
Formato Adobe PDF
5.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/187336
Citazioni
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 85
Social impact