There exists a positive function ψ(t) on t ≥ 0, with fast decay at infinity, such that for every measurable set O in the Euclidean space and R > 0, there exist entire functions A(x) and B (x) of exponential type R, satisfying A(x) ≤ xω(x) ≤ B(x) and |B(x) - A(x)| ≤ψ (Rdist (x,θomega;)). This leads to Erd?os Turán estimates for discrepancy of point set distributions in the multi-dimensional torus. Analogous results hold for approximations by eigenfunctions of differential operators and discrepancy on compact manifolds. © 2010 American Mathematical Society.

Colzani, L., Gigante, G., Travaglini, G. (2011). Trigonometric approximation and a general form of the Erdős-Turan inequality. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 363(2), 1101-1123 [10.1090/S0002-9947-2010-05287-0].

Trigonometric approximation and a general form of the Erdős-Turan inequality

COLZANI, LEONARDO;TRAVAGLINI, GIANCARLO
2011

Abstract

There exists a positive function ψ(t) on t ≥ 0, with fast decay at infinity, such that for every measurable set O in the Euclidean space and R > 0, there exist entire functions A(x) and B (x) of exponential type R, satisfying A(x) ≤ xω(x) ≤ B(x) and |B(x) - A(x)| ≤ψ (Rdist (x,θomega;)). This leads to Erd?os Turán estimates for discrepancy of point set distributions in the multi-dimensional torus. Analogous results hold for approximations by eigenfunctions of differential operators and discrepancy on compact manifolds. © 2010 American Mathematical Society.
Articolo in rivista - Articolo scientifico
Discrepancy; Erdős-Turán inequality;
English
2011
363
2
1101
1123
open
Colzani, L., Gigante, G., Travaglini, G. (2011). Trigonometric approximation and a general form of the Erdős-Turan inequality. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 363(2), 1101-1123 [10.1090/S0002-9947-2010-05287-0].
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-1801909635.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Dominio pubblico
Dimensione 505.72 kB
Formato Adobe PDF
505.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18701
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
Social impact