Elevated levels of circulating chromogranin A (CgA), a protein stored in the secretory granules of many neuroendocrine cells and neurons, have been detected in the blood of patients with neuroendocrine tumors or heart failure. The pathophysiological role of increased secretion of CgA is unknown. Using mice bearing subcutaneous tumors genetically engineered to secrete CgA in circulation, we have found that increased blood levels of this protein prevent vascular leakage induced by tumor necrosis factor-alpha (TNF) in the liver venous system. Structure-activity studies, carried out with CgA fragments administered to normal mice, showed that an active site is located within residues 7-57 of CgA. Accordingly, an anti-CgA antibody directed to residues 53-57 inhibited the effect of circulating CgA, either endogenously produced or exogenously administered, on liver vessels. Studies of the mechanism of action showed that CgA inhibits TNF-induced VE-cadherin down-regulation and barrier alteration of cultured endothelial cells, in an indirect manner. Other effectors, such as thrombin and vascular endothelial growth factor were partially inhibited by CgA N-terminal fragments in in vitro permeability assays. These findings suggest that circulating CgA could help regulate the endothelial barrier function and to protect vessels against TNF-induced plasma leakage in pathological conditions characterized by increased production of TNF and CgA, such as cancer or heart failure.

Ferrero, E., Scabini, S., Magni, E., Foglieni, C., Belloni, D., Colombo, B., et al. (2004). Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage. THE FASEB JOURNAL, 18(3), 554-556 [10.1096/fj.03-0922fje].

Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage

VILLA, ANTONELLO;
2004

Abstract

Elevated levels of circulating chromogranin A (CgA), a protein stored in the secretory granules of many neuroendocrine cells and neurons, have been detected in the blood of patients with neuroendocrine tumors or heart failure. The pathophysiological role of increased secretion of CgA is unknown. Using mice bearing subcutaneous tumors genetically engineered to secrete CgA in circulation, we have found that increased blood levels of this protein prevent vascular leakage induced by tumor necrosis factor-alpha (TNF) in the liver venous system. Structure-activity studies, carried out with CgA fragments administered to normal mice, showed that an active site is located within residues 7-57 of CgA. Accordingly, an anti-CgA antibody directed to residues 53-57 inhibited the effect of circulating CgA, either endogenously produced or exogenously administered, on liver vessels. Studies of the mechanism of action showed that CgA inhibits TNF-induced VE-cadherin down-regulation and barrier alteration of cultured endothelial cells, in an indirect manner. Other effectors, such as thrombin and vascular endothelial growth factor were partially inhibited by CgA N-terminal fragments in in vitro permeability assays. These findings suggest that circulating CgA could help regulate the endothelial barrier function and to protect vessels against TNF-induced plasma leakage in pathological conditions characterized by increased production of TNF and CgA, such as cancer or heart failure.
Articolo in rivista - Articolo scientifico
Vascular Endothelial Growth Factor A; Protein Precursors; Neoplasms; Capillary Permeability; Liver Circulation; Heart Failure; Thrombin; Chromogranin A; Mice; Mice, Nude; Extravasation of Diagnostic and Therapeutic Materials; Neoplasm Transplantation; Protein Structure, Tertiary; Cells, Cultured; Lymphoma; Female; Capillary Leak Syndrome; Animals; Binding Sites; Antigens, CD; Humans; Tumor Necrosis Factor-alpha; Chromogranins; Peptide Fragments; Endothelium, Vascular; Recombinant Fusion Proteins; Antibodies, Monoclonal; Cadherins
English
mar-2004
18
3
554
556
none
Ferrero, E., Scabini, S., Magni, E., Foglieni, C., Belloni, D., Colombo, B., et al. (2004). Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage. THE FASEB JOURNAL, 18(3), 554-556 [10.1096/fj.03-0922fje].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18671
Citazioni
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 93
Social impact