We study diffusion on a periodic billiard table with an infinite horizon in the limit of narrow corridors. An effective trapping mechanism emerges according to which the process can be modeled by a Levy walk combining exponentially distributed trapping times with free propagation along paths whose precise probabilities we compute. This description yields an approximation of the mean squared displacement of infinite-horizon billiards in terms of two transport coefficients, which generalizes to this anomalous regime the Machta-Zwanzig approximation of normal diffusion in finite-horizon billiards

Cristadoro, G., Gilbert, T., Lenci, M., Sanders, D. (2014). Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 90(5), 050102-1-050102-5 [10.1103/PhysRevE.90.050102].

Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards

Cristadoro, G;
2014

Abstract

We study diffusion on a periodic billiard table with an infinite horizon in the limit of narrow corridors. An effective trapping mechanism emerges according to which the process can be modeled by a Levy walk combining exponentially distributed trapping times with free propagation along paths whose precise probabilities we compute. This description yields an approximation of the mean squared displacement of infinite-horizon billiards in terms of two transport coefficients, which generalizes to this anomalous regime the Machta-Zwanzig approximation of normal diffusion in finite-horizon billiards
Articolo in rivista - Articolo scientifico
Anomalous Diffusion; Lorentz Gas
English
2014
90
5
050102-1
050102-5
reserved
Cristadoro, G., Gilbert, T., Lenci, M., Sanders, D. (2014). Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 90(5), 050102-1-050102-5 [10.1103/PhysRevE.90.050102].
File in questo prodotto:
File Dimensione Formato  
PhysRevE.90.050102_MACHTA.pdf

Solo gestori archivio

Descrizione: post-print
Dimensione 234.17 kB
Formato Adobe PDF
234.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/185975
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
Social impact