Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi–Ruelle generalization of the Milnor–Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero

Cristadoro, G. (2006). Fractal diffusion coefficient from dynamical zeta functions. JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL, 39(10), L151-L157 [10.1088/0305-4470/39/10/L01].

Fractal diffusion coefficient from dynamical zeta functions

Cristadoro, G
2006

Abstract

Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi–Ruelle generalization of the Milnor–Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero
Articolo in rivista - Articolo scientifico
Diffusion coefficient, Milnor–Thurnston kneading determinant
English
2006
39
10
L151
L157
none
Cristadoro, G. (2006). Fractal diffusion coefficient from dynamical zeta functions. JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL, 39(10), L151-L157 [10.1088/0305-4470/39/10/L01].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/185437
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
Social impact