In the language of tensor analysis on differentiable manifolds, we present a reduction method of integrability structures, and apply it to recover some well-known hierarchies of integrable nonlinear evolution equations. © 1985 Springer-Verlag.

Magri, F., Morosi, C., Ragnisco, O. (1985). Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 99(1), 115-140 [10.1007/BF01466596].

Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications

MAGRI, FRANCO;
1985

Abstract

In the language of tensor analysis on differentiable manifolds, we present a reduction method of integrability structures, and apply it to recover some well-known hierarchies of integrable nonlinear evolution equations. © 1985 Springer-Verlag.
Articolo in rivista - Articolo scientifico
Poisson-Nijenhuis manifolds; basic PN manifold; reduction method for Nijenhuis manifolds; AKNS hierarchy; Heisenberg chain; KN hierarchy; recursion operator for WKI hierarchy; Nijenhuis structure; KdV hierarchy
English
115
140
Magri, F., Morosi, C., Ragnisco, O. (1985). Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 99(1), 115-140 [10.1007/BF01466596].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18496
Citazioni
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 69
Social impact