We point out that the well known characterization of LP spaces (1 < p < infinity) in terms of orthogonal wavelet bases extends to any separable rearrangement invariant Banach function space X on R-n (equipped with Lebesgue measure) with nontrivial Boyd's indices: Moreover we show that such bases are unconditional bases of X

Soardi, P. (1997). Wavelet bases in rearrangement invariant function spaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 125(12), 3669-3673 [10.1090/S0002-9939-97-04207-X].

Wavelet bases in rearrangement invariant function spaces

Soardi, PM
1997

Abstract

We point out that the well known characterization of LP spaces (1 < p < infinity) in terms of orthogonal wavelet bases extends to any separable rearrangement invariant Banach function space X on R-n (equipped with Lebesgue measure) with nontrivial Boyd's indices: Moreover we show that such bases are unconditional bases of X
Articolo in rivista - Articolo scientifico
Orthogonal wavelet bases; rearrangement invariant Banach function space; Boyd's indices
English
1997
125
12
3669
3673
none
Soardi, P. (1997). Wavelet bases in rearrangement invariant function spaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 125(12), 3669-3673 [10.1090/S0002-9939-97-04207-X].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18362
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
Social impact