In this paper we prove the following theorem: Let G be a discrete amenable group with nontrivial almost-periodic compactification, and let F be a complex-valued function defined in [−1, l]; then F operates in A(G) if and only if F is real-analytic in a neighborhood of the origin and F(0) = 0

DE MICHELE, L., Soardi, P. (1974). Functions which operate in the Fourier algebra of a discrete group. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 45(3), 389-392 [10.1090/S0002-9939-1974-0346419-3].

Functions which operate in the Fourier algebra of a discrete group

DE MICHELE, LEONEDE;SOARDI, PAOLO MAURIZIO
1974

Abstract

In this paper we prove the following theorem: Let G be a discrete amenable group with nontrivial almost-periodic compactification, and let F be a complex-valued function defined in [−1, l]; then F operates in A(G) if and only if F is real-analytic in a neighborhood of the origin and F(0) = 0
Articolo in rivista - Articolo scientifico
Fourier algebra, Functions which operate, Locally compact groups, Real-analytic
English
1974
45
3
389
392
none
DE MICHELE, L., Soardi, P. (1974). Functions which operate in the Fourier algebra of a discrete group. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 45(3), 389-392 [10.1090/S0002-9939-1974-0346419-3].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18253
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact