This study examines the effect of co-administration of antimicrobial peptides and the synthetic glycolipid FP7, which is active in inhibiting inflammatory cytokine production caused by TLR4 activation and signaling. The co-administration of two lipopolysaccharide (LPS)-neutralizing peptides (a cecropin A–melittin hybrid peptide and a human cathelicidin) enhances by an order of magnitude the potency of FP7 in blocking the TLR4 signal. Interestingly, this is not an additional effect of LPS neutralization by peptides, because it also occurs if cells are stimulated by the plant lectin phytohemagglutinin, a non-LPS TLR4 agonist. Our data suggest a dual mechanism of action for the peptides, not exclusively based on LPS binding and neutralization, but also on a direct effect on the LPS-binding proteins of the TLR4 receptor complex. NMR experiments in solution show that peptide addition changes the aggregation state of FP7, promoting the formation of larger micelles. These results suggest a relationship between the aggregation state of lipid A-like ligands and the type and intensity of the TLR4 response.

Peri, F., Facchini, F., Coelho, H., Sestito, S., Delgado, S., Minotti, A., et al. (2018). Co-administration of Antimicrobial Peptides Enhances Toll-like Receptor 4 Antagonist Activity of a Synthetic Glycolipid. CHEMMEDCHEM, 13(3), 280-287 [10.1002/cmdc.201700694].

Co-administration of Antimicrobial Peptides Enhances Toll-like Receptor 4 Antagonist Activity of a Synthetic Glycolipid

Peri, Francesco
;
Facchini, Fabio Alessandro
;
Sestito, Stefania Enza;Minotti, Alberto;
2018

Abstract

This study examines the effect of co-administration of antimicrobial peptides and the synthetic glycolipid FP7, which is active in inhibiting inflammatory cytokine production caused by TLR4 activation and signaling. The co-administration of two lipopolysaccharide (LPS)-neutralizing peptides (a cecropin A–melittin hybrid peptide and a human cathelicidin) enhances by an order of magnitude the potency of FP7 in blocking the TLR4 signal. Interestingly, this is not an additional effect of LPS neutralization by peptides, because it also occurs if cells are stimulated by the plant lectin phytohemagglutinin, a non-LPS TLR4 agonist. Our data suggest a dual mechanism of action for the peptides, not exclusively based on LPS binding and neutralization, but also on a direct effect on the LPS-binding proteins of the TLR4 receptor complex. NMR experiments in solution show that peptide addition changes the aggregation state of FP7, promoting the formation of larger micelles. These results suggest a relationship between the aggregation state of lipid A-like ligands and the type and intensity of the TLR4 response.
Articolo in rivista - Articolo scientifico
Scientifica
aggregation; antimicrobial peptides; FP7; small-molecule antagonists; toll-like receptor 4;
Inflammation; LPS; NMR; TLR4; anti-microbial peptides
English
Peri, F., Facchini, F., Coelho, H., Sestito, S., Delgado, S., Minotti, A., et al. (2018). Co-administration of Antimicrobial Peptides Enhances Toll-like Receptor 4 Antagonist Activity of a Synthetic Glycolipid. CHEMMEDCHEM, 13(3), 280-287 [10.1002/cmdc.201700694].
Peri, F; Facchini, F; Coelho, H; Sestito, S; Delgado, S; Minotti, A; Andreu, D; Jiménez-Barbero, J
File in questo prodotto:
File Dimensione Formato  
Facchini_et_al-2018-ChemMedChem.pdf

Solo gestori archivio

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/180407
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact