We study multiple eigenvalues of a magnetic Aharonov–Bohm operator with Dirichlet boundary conditions in a planar domain. In particular, we study the structure of the set of the couples position of the pole-circulation which keep fixed the multiplicity of a double eigenvalue of the operator with the pole at the origin and half-integer circulation. We provide sufficient conditions for which this set is made of an isolated point. The result confirms and validates a lot of numerical simulations available in preexisting literature

Abatangelo, L., Nys, M. (2018). On multiple eigenvalues for Aharonov–Bohm operators in planar domains. NONLINEAR ANALYSIS, 169, 1-37 [10.1016/j.na.2017.11.010].

On multiple eigenvalues for Aharonov–Bohm operators in planar domains

Abatangelo, Laura;
2018

Abstract

We study multiple eigenvalues of a magnetic Aharonov–Bohm operator with Dirichlet boundary conditions in a planar domain. In particular, we study the structure of the set of the couples position of the pole-circulation which keep fixed the multiplicity of a double eigenvalue of the operator with the pole at the origin and half-integer circulation. We provide sufficient conditions for which this set is made of an isolated point. The result confirms and validates a lot of numerical simulations available in preexisting literature
Articolo in rivista - Articolo scientifico
Magnetic Schr\"{o}dinger operators, Aharonov--Bohm potential, multiple eigenvalues
English
2018
169
1
37
reserved
Abatangelo, L., Nys, M. (2018). On multiple eigenvalues for Aharonov–Bohm operators in planar domains. NONLINEAR ANALYSIS, 169, 1-37 [10.1016/j.na.2017.11.010].
File in questo prodotto:
File Dimensione Formato  
NA2018.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/179848
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact