In this paper we consider the numerical solution of the Hamiltonian wave equation in two spatial dimensions. We construct a two step procedure in which we first discretize the space by the Mimetic Finite Difference (MFD) method and then we employ a standard symplectic scheme to integrate the semi-discrete Hamiltonian system derived. The main characteristic of the MFD methods, when applied to stationary problems, is to mimic important properties of the continuous system. This approach yields a full numerical procedure suitable to integrate Hamiltonian problems. A complete theoretical analysis of the method and some numerical simulations are developed in the paper.
Beirao da Veiga, L., Lopez, L., & Vacca, G. (2017). Mimetic finite difference methods for Hamiltonian wave equations in 2D. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 74(5), 1123-1141 [10.1016/j.camwa.2017.05.022].
Citazione: | Beirao da Veiga, L., Lopez, L., & Vacca, G. (2017). Mimetic finite difference methods for Hamiltonian wave equations in 2D. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 74(5), 1123-1141 [10.1016/j.camwa.2017.05.022]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | No | |
Titolo: | Mimetic finite difference methods for Hamiltonian wave equations in 2D | |
Autori: | Beirao da Veiga, L; Lopez, L; Vacca, G | |
Autori: | ||
Data di pubblicazione: | 2017 | |
Lingua: | English | |
Rivista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.camwa.2017.05.022 | |
Appare nelle tipologie: | 01 - Articolo su rivista |