We study the behavior of eigenfunctions for magnetic Aharonov-Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar domain. We prove a sharp estimate for the rate of convergence of eigenfunctions as the pole moves in the interior of the domain.

Abatangelo, L., Felli, V. (2017). Rate of convergence for eigenfunctions of Aharonov-Bohm operators with a moving pole. In Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs (pp. 1-30). Springer International Publishing [10.1007/978-3-319-64489-9_1].

Rate of convergence for eigenfunctions of Aharonov-Bohm operators with a moving pole

Abatangelo, L;Felli, V
2017

Abstract

We study the behavior of eigenfunctions for magnetic Aharonov-Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar domain. We prove a sharp estimate for the rate of convergence of eigenfunctions as the pole moves in the interior of the domain.
Capitolo o saggio
Aharonov-Bohm potential; Convergence of eigenfunctions; Magnetic Schrödinger operators; Mathematics (all)
English
Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs
2017
9783319644882
22
Springer International Publishing
1
30
Abatangelo, L., Felli, V. (2017). Rate of convergence for eigenfunctions of Aharonov-Bohm operators with a moving pole. In Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs (pp. 1-30). Springer International Publishing [10.1007/978-3-319-64489-9_1].
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/178161
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
Social impact