We consider a stochastic optimal control problem governed by a stochastic differential equation with delay in the control. Using an existence and uniqueness result of a sufficiently regular mild solution of the associated Hamilton--Jacobi--Bellman equation (see the companion paper [F. Gozzi and F. Masiero, SIAM J. Control Optim., 55 (2017), pp. 2981--3012]), we solve the control problem by proving a verification theorem and the existence of optimal feedback controls

Gozzi, F., Masiero, F. (2017). Stochastic Optimal Control with Delay in the Control II: Verification Theorem and Optimal Feedbacks. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 55(5), 3013-3038 [10.1137/16M1073637].

Stochastic Optimal Control with Delay in the Control II: Verification Theorem and Optimal Feedbacks

Masiero, F.
2017

Abstract

We consider a stochastic optimal control problem governed by a stochastic differential equation with delay in the control. Using an existence and uniqueness result of a sufficiently regular mild solution of the associated Hamilton--Jacobi--Bellman equation (see the companion paper [F. Gozzi and F. Masiero, SIAM J. Control Optim., 55 (2017), pp. 2981--3012]), we solve the control problem by proving a verification theorem and the existence of optimal feedback controls
Articolo in rivista - Articolo scientifico
optimal control of stochastic delay equations, delay in the control, lack of the structure condition, second order Hamilton--Jacobi--Bellman equations in infinite dimension, verification theorem, optimal feedbacks, $\mathcal{K}$-convergence
English
2017
55
5
3013
3038
reserved
Gozzi, F., Masiero, F. (2017). Stochastic Optimal Control with Delay in the Control II: Verification Theorem and Optimal Feedbacks. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 55(5), 3013-3038 [10.1137/16M1073637].
File in questo prodotto:
File Dimensione Formato  
gozzimasieroII2017.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 311.95 kB
Formato Adobe PDF
311.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/177990
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
Social impact