Areas of myocardial infarction may retain glycolytic activity and this finding is indicative of tissue viability and predictive of functional recovery after revascularization. In order to assess the relation between the time elapsed from the occurrence of acute myocardial infarction and persistence of myocardial metabolic activity in the infarcted tissue, we prospectively studied 65 patients with previous myocardial infarction diagnosed clinically and by electrocardiographic (Q wave) and enzymatic criteria. All patients underwent coronary angiography and contrast left ventriculography, evaluation of regional myocardial glucose metabolism (in the fasting state) by positron emission tomography (PET) with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), and assessment of myocardial perfusion by single photon emission computed tomography (SPECT) with technetium-99m methoxyisobutyl isonitrile (99mTc-MIBI). Based on the regional metabolic and perfusion findings, patients were divided into 2 groups, depending on the absence (group 1, 26 patients) or presence (group 2, 39 patients) of [18F]FDG uptake in the underperfused regions. Areas of underperfusion at rest, consistent with the clinically identified myocardial infarction site, were observed in all patients. Severity of coronary artery disease, presence of collaterals, number of hypocontractile segments, and wall motion score did not differ significantly in the 2 groups. The time elapsed from the infarction was significantly greater (1,860 +/- 1,333 days) in group 1 than in group 2 (92 +/- 115 days; p < 0.0001). Exercise caused an increase in severity and/or extent of resting perfusion abnormalities in a greater proportion of patients of group 1 (53% vs 23%)

Fragasso, G., Chierchia, S., Lucignani, G., Landoni, C., Conversano, A., Gilardi, M., et al. (1993). Time dependence of residual tissue viability after myocardial infarction assessed by [18F]fluorodeoxyglucose and positron emission tomography. THE AMERICAN JOURNAL OF CARDIOLOGY, 72(19), G131-G139 [10.1016/0002-9149(93)90119-W].

Time dependence of residual tissue viability after myocardial infarction assessed by [18F]fluorodeoxyglucose and positron emission tomography

LANDONI, CLAUDIO;GILARDI, MARIA CARLA;FAZIO, FERRUCCIO
1993

Abstract

Areas of myocardial infarction may retain glycolytic activity and this finding is indicative of tissue viability and predictive of functional recovery after revascularization. In order to assess the relation between the time elapsed from the occurrence of acute myocardial infarction and persistence of myocardial metabolic activity in the infarcted tissue, we prospectively studied 65 patients with previous myocardial infarction diagnosed clinically and by electrocardiographic (Q wave) and enzymatic criteria. All patients underwent coronary angiography and contrast left ventriculography, evaluation of regional myocardial glucose metabolism (in the fasting state) by positron emission tomography (PET) with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), and assessment of myocardial perfusion by single photon emission computed tomography (SPECT) with technetium-99m methoxyisobutyl isonitrile (99mTc-MIBI). Based on the regional metabolic and perfusion findings, patients were divided into 2 groups, depending on the absence (group 1, 26 patients) or presence (group 2, 39 patients) of [18F]FDG uptake in the underperfused regions. Areas of underperfusion at rest, consistent with the clinically identified myocardial infarction site, were observed in all patients. Severity of coronary artery disease, presence of collaterals, number of hypocontractile segments, and wall motion score did not differ significantly in the 2 groups. The time elapsed from the infarction was significantly greater (1,860 +/- 1,333 days) in group 1 than in group 2 (92 +/- 115 days; p < 0.0001). Exercise caused an increase in severity and/or extent of resting perfusion abnormalities in a greater proportion of patients of group 1 (53% vs 23%)
Articolo in rivista - Articolo scientifico
[18F]fluorodeoxyglucose, PET, SPECT
English
1993
72
19
G131
G139
none
Fragasso, G., Chierchia, S., Lucignani, G., Landoni, C., Conversano, A., Gilardi, M., et al. (1993). Time dependence of residual tissue viability after myocardial infarction assessed by [18F]fluorodeoxyglucose and positron emission tomography. THE AMERICAN JOURNAL OF CARDIOLOGY, 72(19), G131-G139 [10.1016/0002-9149(93)90119-W].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/16766
Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 22
Social impact