Each cell lineage specified in the preimplantation mammalian embryo depends on intrinsic factors for its development, but there is also mutual interdependence between them. OCT4 is required for the ICM/epiblast lineage, and at transient high levels for extraembryonic endoderm, but also indirectly through its role in regulating Fgf4 expression, for the establishment and proliferation of extraembryonic ectoderm from polar trophectoderm. The transcription factor SOX2 has also been implicated in the regulation of Fgf4 expression. We have used gene targeting to inactivate Sox2, examining the phenotypic consequences in mutant embryos and in chimeras in which the epiblast is rescued with wild-type ES cells. We find a cell-autonomous requirement for the gene in both epiblast and extraembryonic ectoderm, the multipotent precursors of all embryonic and trophoblast cell types, respectively. However, an earlier role within the ICM may be masked by the persistence of maternal protein, whereas the lack of SOX2 only becomes critical in the chorion after 7.5 days postcoitum. Our data suggest that maternal components could be involved in establishing early cell fate decisions and that a combinatorial code, requiring SOX2 and OCT4, specifies the first three lineages present at implantation.

Avilion, A., Nicolis, S., Pevny, L., Perez, L., Vivian, N., Lovell Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. GENES & DEVELOPMENT, 17(1), 126-140 [10.1101/gad.224503].

Multipotent cell lineages in early mouse development depend on SOX2 function

NICOLIS, SILVIA KIRSTEN;
2003

Abstract

Each cell lineage specified in the preimplantation mammalian embryo depends on intrinsic factors for its development, but there is also mutual interdependence between them. OCT4 is required for the ICM/epiblast lineage, and at transient high levels for extraembryonic endoderm, but also indirectly through its role in regulating Fgf4 expression, for the establishment and proliferation of extraembryonic ectoderm from polar trophectoderm. The transcription factor SOX2 has also been implicated in the regulation of Fgf4 expression. We have used gene targeting to inactivate Sox2, examining the phenotypic consequences in mutant embryos and in chimeras in which the epiblast is rescued with wild-type ES cells. We find a cell-autonomous requirement for the gene in both epiblast and extraembryonic ectoderm, the multipotent precursors of all embryonic and trophoblast cell types, respectively. However, an earlier role within the ICM may be masked by the persistence of maternal protein, whereas the lack of SOX2 only becomes critical in the chorion after 7.5 days postcoitum. Our data suggest that maternal components could be involved in establishing early cell fate decisions and that a combinatorial code, requiring SOX2 and OCT4, specifies the first three lineages present at implantation.
Articolo in rivista - Articolo scientifico
Gene Targeting; Genes, Lethal; Cell Lineage; Embryo Transfer; Ectoderm; Crosses, Genetic; Pregnancy; Gene Expression Regulation, Developmental; Mice; Transcription Factors; Multipotent Stem Cells; Trophoblasts; Microscopy, Confocal; Male; Chimera; Blastocyst; Octamer Transcription Factor-3; Female; Chorion; Embryonic and Fetal Development; Fibroblast Growth Factors; Maternal-Fetal Exchange; SOXB1 Transcription Factors; Phenotype; Animals; Heterozygote; DNA-Binding Proteins; Nuclear Proteins; HMGB Proteins
English
1-gen-2003
17
1
126
140
none
Avilion, A., Nicolis, S., Pevny, L., Perez, L., Vivian, N., Lovell Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. GENES & DEVELOPMENT, 17(1), 126-140 [10.1101/gad.224503].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/16194
Citazioni
  • Scopus 1911
  • ???jsp.display-item.citation.isi??? 1770
Social impact