Static source code analysis is an increasingly important activity to manage software project quality, and is often found as a part of the development process. A widely adopted way of checking code quality is through the detection of violations to specific sets of rules addressing good programming practices. SonarQube is a platform able to detect these violations, called Issues. In this paper we described an empirical study performend on two industrial projects, where we used Issues extracted on different versions of the projects to predict changes in code through a set of machine learning models. We achieved good detection performances, especially when predicting changes in the next version. This result paves the way for future investigations of the interest in an industrial setting towards the prioritization of Issues management according to their impact on change-proneness.
Tollin, I., Arcelli Fontana, F., Zanoni, M., Roveda, R. (2017). Change prediction through coding rules violations. In ACM Proceedings of the 21th International Conference on Evaluation and Assessment in Software Engineering (EASE) (pp.61-64). Karlskrona : Association for Computing Machinery [10.1145/3084226.3084282].
Change prediction through coding rules violations
Arcelli Fontana F;Zanoni, M;Roveda, R
2017
Abstract
Static source code analysis is an increasingly important activity to manage software project quality, and is often found as a part of the development process. A widely adopted way of checking code quality is through the detection of violations to specific sets of rules addressing good programming practices. SonarQube is a platform able to detect these violations, called Issues. In this paper we described an empirical study performend on two industrial projects, where we used Issues extracted on different versions of the projects to predict changes in code through a set of machine learning models. We achieved good detection performances, especially when predicting changes in the next version. This result paves the way for future investigations of the interest in an industrial setting towards the prioritization of Issues management according to their impact on change-proneness.File | Dimensione | Formato | |
---|---|---|---|
EASE_2017_paper_129.pdf
accesso aperto
Descrizione: ease 2017 proceeding
Dimensione
446.34 kB
Formato
Adobe PDF
|
446.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.