Let E be a stable vector bundle of rank r and slope 2g-1 on a smooth irreducible complex projective curve C of genus g > 2. In this paper we show a relation between theta divisor associated to E and the geometry of the tautological model of E. In particular, we prove that for r > g-1, if C is a Petri curve and E is general in its moduli space, its theta divisor defines an irreducible component of the variety parametrizing (g-2)-linear spaces which are g-secant the tautological model of E. Conversely, for a stable, (g-2)-very ample vector bundle E, the existence of an irreducible non special component of dimension g-1 of the above variety implies that E admits theta divisor
Brivio, S. (2018). Theta divisors and the geometry of tautological model. COLLECTANEA MATHEMATICA, 69(1), 131-150.
Citazione: | Brivio, S. (2018). Theta divisors and the geometry of tautological model. COLLECTANEA MATHEMATICA, 69(1), 131-150. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Presenza di un coautore afferente ad Istituzioni straniere: | No |
Titolo: | Theta divisors and the geometry of tautological model. |
Autori: | Brivio, S |
Autori: | BRIVIO, SONIA (Corresponding) |
Data di pubblicazione: | 2018 |
Lingua: | English |
Rivista: | COLLECTANEA MATHEMATICA |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s13348-017-0198-2 |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Collectanea.pdf | N/A | Open Access Visualizza/Apri |