The double-histone fold is a rare protein fold in which two consecutive regions characterized by the typical structure of histones assemble together, thus giving a histone pseudodimer. Previously, this fold was found in a few prokaryotic histones and in the regulatory region of guanine-nucleotide exchange factors of the Sos family. Standard methods of sequence comparison did not allow us to find new proteins containing a histone pseudodimer, as previously reported (Sondermann et al. 2003). However, a deeper investigation of protein sequences showed that the two histone folds included in Sos proteins share significant sequence similarity with nucleosomal histones. On the basis of this observation, we applied a specific strategy of sequence-homology search, which led to the identification of a new group of histone pseudodimers in Cca3 and proteins similar to Cca3 (Cca3S). A homology model of the histone pseudodimer included in rat Cca3 was constructed. A subsequent structure-function relationship study revealed that the histone pseudodimers included in Cca3 and Cca3S proteins, but not those present in Sos proteins, could retain the ability of mediating protein-DNA interactions, and could consequently act as DNA-binding modules. © Springer-Verlag 2005.
Greco, C., Sacco, E., Vanoni, M., DE GIOIA, L. (2005). Identification and in silico analysis of a new group of double-histone fold-containing proteins. JOURNAL OF MOLECULAR MODELING, 12(1), 76-84 [10.1007/s00894-005-0008-8].
Identification and in silico analysis of a new group of double-histone fold-containing proteins
GRECO, CLAUDIO;SACCO, ELENA;VANONI, MARCO ERCOLE;DE GIOIA, LUCA
2005
Abstract
The double-histone fold is a rare protein fold in which two consecutive regions characterized by the typical structure of histones assemble together, thus giving a histone pseudodimer. Previously, this fold was found in a few prokaryotic histones and in the regulatory region of guanine-nucleotide exchange factors of the Sos family. Standard methods of sequence comparison did not allow us to find new proteins containing a histone pseudodimer, as previously reported (Sondermann et al. 2003). However, a deeper investigation of protein sequences showed that the two histone folds included in Sos proteins share significant sequence similarity with nucleosomal histones. On the basis of this observation, we applied a specific strategy of sequence-homology search, which led to the identification of a new group of histone pseudodimers in Cca3 and proteins similar to Cca3 (Cca3S). A homology model of the histone pseudodimer included in rat Cca3 was constructed. A subsequent structure-function relationship study revealed that the histone pseudodimers included in Cca3 and Cca3S proteins, but not those present in Sos proteins, could retain the ability of mediating protein-DNA interactions, and could consequently act as DNA-binding modules. © Springer-Verlag 2005.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.