Inkjet printing of spherical gold nanoparticles is widely applied in the fabrication of analytical and diagnostics tools. These methods could be extended to non-spherical gold nanoparticles that can efficiently release heat locally when irradiated in the near infrared (NIR) wavelength region, due to localized surface plasmon resonance (LSPR). However, this promising application requires the ability to maintain high efficiency and tunability of the NIR LSPR of the printed nanoparticles. In this study stable inks containing PEGylated gold nanostars (GNS) were fabricated and successfully inkjet-printed onto differently coated paper substrates with different porosity and permeability. A pronounced photothermal effect was observed under NIR excitation of LSPR of the printed GNS patterns even at low laser intensities. It was found that beside the direct role of the laser intensity, this effect depends appreciably on the printing parameters, such as drop density (δ, drops/mm2) and number of printed layers, and, critically, on the permeability of the coated paper substrates. These results will promote the development of GNS-based printed platforms for local photothermal therapy.

Borzenkov, M., Määttänen, A., Ihalainen, P., Collini, M., Cabrini, E., Dacarro, G., et al. (2016). Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 7(1), 1480-1485 [10.3762/bjnano.7.140].

Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability

BORZENKOV, MYKOLA
;
COLLINI, MADDALENA;CHIRICO, GIUSEPPE
Ultimo
2016

Abstract

Inkjet printing of spherical gold nanoparticles is widely applied in the fabrication of analytical and diagnostics tools. These methods could be extended to non-spherical gold nanoparticles that can efficiently release heat locally when irradiated in the near infrared (NIR) wavelength region, due to localized surface plasmon resonance (LSPR). However, this promising application requires the ability to maintain high efficiency and tunability of the NIR LSPR of the printed nanoparticles. In this study stable inks containing PEGylated gold nanostars (GNS) were fabricated and successfully inkjet-printed onto differently coated paper substrates with different porosity and permeability. A pronounced photothermal effect was observed under NIR excitation of LSPR of the printed GNS patterns even at low laser intensities. It was found that beside the direct role of the laser intensity, this effect depends appreciably on the printing parameters, such as drop density (δ, drops/mm2) and number of printed layers, and, critically, on the permeability of the coated paper substrates. These results will promote the development of GNS-based printed platforms for local photothermal therapy.
Articolo in rivista - Articolo scientifico
Gold nanostars; Inkjet printing; Localized surface plasmon resonance (LSPR); Photothermal effect;
Gold nanostars; Inkjet printing; Localized surface plasmon resonance (LSPR); Photothermal effect; Materials Science (all); Physics and Astronomy (all); Electrical and Electronic Engineering
English
1480
1485
6
Borzenkov, M., Määttänen, A., Ihalainen, P., Collini, M., Cabrini, E., Dacarro, G., et al. (2016). Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 7(1), 1480-1485 [10.3762/bjnano.7.140].
File in questo prodotto:
File Dimensione Formato  
10281-151744.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/151744
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
Social impact