Cystic fibrosis-associated liver disease is a chronic cholangiopathy that negatively affects the quality of life of cystic fibrosis patients. In addition to reducing biliary chloride and bicarbonate secretion, up-regulation of toll-like receptor 4/nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB)-dependent immune mechanisms plays a major role in the pathogenesis of cystic fibrosis-associated liver disease and may represent a therapeutic target. Nuclear receptors are transcription factors that regulate several intracellular functions. Some nuclear receptors, including peroxisome proliferator-activated receptor-γ (PPAR-γ), may counterregulate inflammation in a tissue-specific manner. In this study, we explored the anti-inflammatory effect of PPAR-γ stimulation in vivo in cystic fibrosis transmembrane conductance regulator (Cftr) knockout mice exposed to dextran sodium sulfate and in vitro in primary cholangiocytes isolated from wild-type and from Cftr-knockout mice exposed to lipopolysaccharide. We found that in CFTR-defective biliary epithelium expression of PPAR-γ is increased but that this does not result in increased receptor activity because the availability of bioactive ligands is reduced. Exogenous administration of synthetic agonists of PPAR-γ (pioglitazone and rosiglitazone) up-regulates PPAR-γ-dependent genes, while inhibiting the activation of NF-κB and the secretion of proinflammatory cytokines (lipopolysaccharide-induced CXC chemokine, monocyte chemotactic protein-1, macrophage inflammatory protein-2, granulocyte colony-stimulating factor, keratinocyte chemoattractant) in response to lipopolysaccharide. PPAR-γ agonists modulate NF-κB-dependent inflammation by up-regulating nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha, a negative regulator of NF-κB. Stimulation of PPAR-γ in vivo (rosiglitazone) significantly attenuates biliary damage and inflammation in Cftr-knockout mice exposed to a dextran sodium sulfate-induced portal endotoxemia. Conclusion: These studies unravel a novel function of PPAR-γ in controlling biliary epithelium inflammation and suggest that impaired activation of PPAR-γ contributes to the chronic inflammatory state of CFTR-defective cholangiocytes. (Hepatology 2015;62:1551-1562)

Scirpo, R., Fiorotto, R., Villani, A., Amenduni, M., Spirli, C., Strazzabosco, M. (2015). Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. HEPATOLOGY, 62(5), 1551-1562 [10.1002/hep.28000].

Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium

SCIRPO, ROBERTO
Primo
;
STRAZZABOSCO, MARIO
Ultimo
2015

Abstract

Cystic fibrosis-associated liver disease is a chronic cholangiopathy that negatively affects the quality of life of cystic fibrosis patients. In addition to reducing biliary chloride and bicarbonate secretion, up-regulation of toll-like receptor 4/nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB)-dependent immune mechanisms plays a major role in the pathogenesis of cystic fibrosis-associated liver disease and may represent a therapeutic target. Nuclear receptors are transcription factors that regulate several intracellular functions. Some nuclear receptors, including peroxisome proliferator-activated receptor-γ (PPAR-γ), may counterregulate inflammation in a tissue-specific manner. In this study, we explored the anti-inflammatory effect of PPAR-γ stimulation in vivo in cystic fibrosis transmembrane conductance regulator (Cftr) knockout mice exposed to dextran sodium sulfate and in vitro in primary cholangiocytes isolated from wild-type and from Cftr-knockout mice exposed to lipopolysaccharide. We found that in CFTR-defective biliary epithelium expression of PPAR-γ is increased but that this does not result in increased receptor activity because the availability of bioactive ligands is reduced. Exogenous administration of synthetic agonists of PPAR-γ (pioglitazone and rosiglitazone) up-regulates PPAR-γ-dependent genes, while inhibiting the activation of NF-κB and the secretion of proinflammatory cytokines (lipopolysaccharide-induced CXC chemokine, monocyte chemotactic protein-1, macrophage inflammatory protein-2, granulocyte colony-stimulating factor, keratinocyte chemoattractant) in response to lipopolysaccharide. PPAR-γ agonists modulate NF-κB-dependent inflammation by up-regulating nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha, a negative regulator of NF-κB. Stimulation of PPAR-γ in vivo (rosiglitazone) significantly attenuates biliary damage and inflammation in Cftr-knockout mice exposed to a dextran sodium sulfate-induced portal endotoxemia. Conclusion: These studies unravel a novel function of PPAR-γ in controlling biliary epithelium inflammation and suggest that impaired activation of PPAR-γ contributes to the chronic inflammatory state of CFTR-defective cholangiocytes. (Hepatology 2015;62:1551-1562)
Articolo in rivista - Articolo scientifico
Animals; Cells, Cultured; Cholangitis; Cystic Fibrosis; Cytokines; Epithelium; I-kappa B Proteins; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Mice, Inbred CFTR; NF-KappaB Inhibitor alpha; NF-kappa B; PPAR gamma; Hepatology
English
nov-2015
2015
62
5
1551
1562
none
Scirpo, R., Fiorotto, R., Villani, A., Amenduni, M., Spirli, C., Strazzabosco, M. (2015). Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. HEPATOLOGY, 62(5), 1551-1562 [10.1002/hep.28000].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/151700
Citazioni
  • Scopus 119
  • ???jsp.display-item.citation.isi??? 112
Social impact