We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Icemarginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any icemarginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes.

Franzetti, A., Navarra, F., Tagliaferri, I., Gandolfi, I., Bestetti, G., Minora, U., et al. (2017). Potential sources of bacteria colonizing the cryoconite of an Alpine glacier. PLOS ONE, 12(3) [10.1371/journal.pone.0174786].

Potential sources of bacteria colonizing the cryoconite of an Alpine glacier

FRANZETTI, ANDREA
Primo
;
GANDOLFI, ISABELLA;BESTETTI, GIUSEPPINA;AMBROSINI, ROBERTO
Ultimo
2017

Abstract

We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Icemarginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any icemarginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes.
Articolo in rivista - Articolo scientifico
cryoconite; glacier; bacteria
English
2017
12
3
e0174786
open
Franzetti, A., Navarra, F., Tagliaferri, I., Gandolfi, I., Bestetti, G., Minora, U., et al. (2017). Potential sources of bacteria colonizing the cryoconite of an Alpine glacier. PLOS ONE, 12(3) [10.1371/journal.pone.0174786].
File in questo prodotto:
File Dimensione Formato  
10281-150557.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/150557
Citazioni
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 35
Social impact