ConspectusMolecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development.The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials.The effort needed to obtain strong dipoles that are noncentrosymmetrically mounted onto rotors and do not hamper rotational motion is a further aspect of this research activity. Thus, materials showing dielectric properties in response to applied electric fields have been fabricated. This may lead to challenging materials that are promptly responsive to an applied electric field, altering the ferroelectric or antiferroelectric ground state by fast dipole reorientation when subjected to electric polarization.

Comotti, A., Bracco, S., Sozzani, P. (2016). Molecular Rotors Built in Porous Materials. ACCOUNTS OF CHEMICAL RESEARCH, 49(9), 1701-1710 [10.1021/acs.accounts.6b00215].

Molecular Rotors Built in Porous Materials

COMOTTI, ANGIOLINA
Primo
;
BRACCO, SILVIA
Secondo
;
SOZZANI, PIERO ERNESTO
2016

Abstract

ConspectusMolecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development.The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials.The effort needed to obtain strong dipoles that are noncentrosymmetrically mounted onto rotors and do not hamper rotational motion is a further aspect of this research activity. Thus, materials showing dielectric properties in response to applied electric fields have been fabricated. This may lead to challenging materials that are promptly responsive to an applied electric field, altering the ferroelectric or antiferroelectric ground state by fast dipole reorientation when subjected to electric polarization.
Articolo in rivista - Articolo scientifico
molecular rotors, solid state, nanoporosity, 2H NMR; modulation of dynamic, adsorption;
English
19-ago-2016
2016
49
9
1701
1710
partially_open
Comotti, A., Bracco, S., Sozzani, P. (2016). Molecular Rotors Built in Porous Materials. ACCOUNTS OF CHEMICAL RESEARCH, 49(9), 1701-1710 [10.1021/acs.accounts.6b00215].
File in questo prodotto:
File Dimensione Formato  
Accounts of Chemical Research_submission_05-05-16.pdf

accesso aperto

Descrizione: Submitted version
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
2016_AccChemRes_10.1021-acs.accounts.6b00215_BRACCO.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 8.13 MB
Formato Adobe PDF
8.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/147146
Citazioni
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 112
Social impact