We show that almost complex manifolds (M4,J) of real dimension 4 for which the image of the Nijenhuis tensor forms a non-integrable bundle, called torsion bundle, admit a Z2-structure locally, that is, a double absolute parallelism. In this way, the problem of equivalence for such almost complex manifolds can be solved; moreover, the classification of locally homogeneous manifold (M4,J) is explicitly given when the Lie algebra of its infinitesimal automorphisms is non-solvable (indeed reductive). It is also shown that the group of the automorphisms of (M4,J) is a Lie group of dimension less than or equal to 4, whose isotropy subgroup has at most two elements, and that there are not non-constant holomorphic functions on (M4,J).
Bozzetti, C., & Medori, C. (2017). Almost complex manifolds with non-degenerate torsion. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 14(3).
Citazione: | Bozzetti, C., & Medori, C. (2017). Almost complex manifolds with non-degenerate torsion. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 14(3). |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Presenza di un coautore afferente ad Istituzioni straniere: | No |
Titolo: | Almost complex manifolds with non-degenerate torsion |
Autori: | Bozzetti, C; Medori, C |
Autori: | |
Data di pubblicazione: | 2017 |
Lingua: | English |
Rivista: | INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1142/S0219887817500335 |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
S0219887817500335.pdf | Articolo Principale | N/A | Administrator Richiedi una copia |