We study the Neumann boundary value problem for the second order ODE (Formula presented.),t∈[0,T],where (Formula presented.) is a bounded function of constant sign, (Formula presented.) are the positive/negative part of a sign-changing weight a(t) and μ>0 is a real parameter. Depending on the sign of (Formula presented.) at infinity, we find existence/multiplicity of solutions for μ in a “small” interval near the value (Formula presented.).The proof exploits a change of variables, transforming the sign-indefinite Eq. (1) into a forced perturbation of an autonomous planar system, and a shooting argument. Nonexistence results for (Formula presented.) and (Formula presented.) are given, as well.
Boscaggin, A., & Garrione, M. (2016). Multiple Solutions to Neumann Problems with Indefinite Weight and Bounded Nonlinearities. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 28(1), 167-187 [10.1007/s10884-015-9430-5].
Citazione: | Boscaggin, A., & Garrione, M. (2016). Multiple Solutions to Neumann Problems with Indefinite Weight and Bounded Nonlinearities. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 28(1), 167-187 [10.1007/s10884-015-9430-5]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | No | |
Titolo: | Multiple Solutions to Neumann Problems with Indefinite Weight and Bounded Nonlinearities | |
Autori: | Boscaggin, A; Garrione, M | |
Autori: | GARRIONE, MAURIZIO (Ultimo) | |
Data di pubblicazione: | 2016 | |
Lingua: | English | |
Rivista: | JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10884-015-9430-5 | |
Appare nelle tipologie: | 01 - Articolo su rivista |