We deal with positive solutions for the Neumann boundary value problem associated with the scalar second order ODE u″ + q(t)g(u) = 0, t ϵ [0, T]; where g : [0,+∞[→ R is positive on ]0,+ ∞ [ and q(t) is an indefinite weight. Complementary to previous investigations in the case ∫T0 q(t) < 0, we provide existence results for a suitable class of weights having (small) positive mean, when g′(u) < 0 at infinity. Our proof relies on a shooting argument for a suitable equivalent planar system of the type x′ = y, y′ = h(x)y2 + q(t); with h(x) a continuous function defined on the whole real line.
Boscaggin, A., & Garrione, M. (2016). Positive solutions to indefinite neumann problems when the weight has positive average. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 36(10), 5231-5244 [10.3934/dcds.2016028].
Citazione: | Boscaggin, A., & Garrione, M. (2016). Positive solutions to indefinite neumann problems when the weight has positive average. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 36(10), 5231-5244 [10.3934/dcds.2016028]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | No | |
Titolo: | Positive solutions to indefinite neumann problems when the weight has positive average | |
Autori: | Boscaggin, A; Garrione, M | |
Autori: | ||
Data di pubblicazione: | 2016 | |
Lingua: | English | |
Rivista: | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.3934/dcds.2016028 | |
Appare nelle tipologie: | 01 - Articolo su rivista |