We prove existence and multiplicity results for periodic solutions of Hamiltonian systems, by the use of a higher dimensional version of the Poincaré-Birkhoff fixed point theorem. The first part of the paper deals with periodic perturbations of a completely integrable system, while in the second part we focus on some suitable global conditions, so to deal with weakly coupled systems.

Fonda, A., Garrione, M., Gidoni, P. (2016). Periodic perturbations of Hamiltonian systems. ADVANCES IN NONLINEAR ANALYSIS, 5(4), 367-382 [10.1515/anona-2015-0122].

Periodic perturbations of Hamiltonian systems

GARRIONE, MAURIZIO;
2016

Abstract

We prove existence and multiplicity results for periodic solutions of Hamiltonian systems, by the use of a higher dimensional version of the Poincaré-Birkhoff fixed point theorem. The first part of the paper deals with periodic perturbations of a completely integrable system, while in the second part we focus on some suitable global conditions, so to deal with weakly coupled systems.
Articolo in rivista - Articolo scientifico
Periodic solutions; perturbation theory; Poincaré-Birkhoff theorem;
Periodic solutions; perturbation theory; Poincaré-Birkhoff theorem; Analysis
English
2016
5
4
367
382
none
Fonda, A., Garrione, M., Gidoni, P. (2016). Periodic perturbations of Hamiltonian systems. ADVANCES IN NONLINEAR ANALYSIS, 5(4), 367-382 [10.1515/anona-2015-0122].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/146636
Citazioni
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
Social impact