We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particular the real vertex with non-trivial fixed leg. We give a careful derivation of the relevant ingredients using duality with Chern-Simons theory on orbifolds. We show that the real vertex can also be interpreted in terms of a statistical model of symmetric crystal melting. Using this latter connection, we also assess the constant map contribution in Calabi-Yau orientifold models. We find that there are no perturbative contributions beyond one-loop, but a non-trivial sum over non-perturbative sectors, which we compare with the non-perturbative contribution to the closed string expansion. © 2010 Elsevier B.V
Krefl, D., Pasquetti, S., & Walcher, J. (2010). The real topological vertex at work. NUCLEAR PHYSICS. B, 833(3), 153-198.
Citazione: | Krefl, D., Pasquetti, S., & Walcher, J. (2010). The real topological vertex at work. NUCLEAR PHYSICS. B, 833(3), 153-198. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Presenza di un coautore afferente ad Istituzioni straniere: | Si |
Titolo: | The real topological vertex at work |
Autori: | Krefl, D; Pasquetti, S; Walcher, J |
Autori: | PASQUETTI, SARA (Secondo) |
Data di pubblicazione: | 2010 |
Lingua: | English |
Rivista: | NUCLEAR PHYSICS. B |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.nuclphysb.2010.01.002 |
Appare nelle tipologie: | 01 - Articolo su rivista |