In the present paper we develop the Virtual Element Method for hyperbolic problems on polygonal meshes, considering the linear wave equations as our model problem. After presenting the semi-discrete scheme, we derive the convergence estimates in H1 semi-norm and L2 norm. Moreover we develop a theoretical analysis on the stability for the fully discrete problem by comparing the Newmark method and the Bathe method. Finally we show the practical behaviour of the proposed method through a large set of numerical tests
Vacca, G. (2017). Virtual Element Methods for hyperbolic problems on polygonal meshes. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 74(5), 882-898 [10.1016/j.camwa.2016.04.029].
Citazione: | Vacca, G. (2017). Virtual Element Methods for hyperbolic problems on polygonal meshes. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 74(5), 882-898 [10.1016/j.camwa.2016.04.029]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | No | |
Titolo: | Virtual Element Methods for hyperbolic problems on polygonal meshes | |
Autori: | Vacca, G | |
Autori: | VACCA, GIUSEPPE (Corresponding) | |
Data di pubblicazione: | 2017 | |
Lingua: | English | |
Rivista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.camwa.2016.04.029 | |
Appare nelle tipologie: | 01 - Articolo su rivista |