A common representation of surfaces with complicated topology and geometry is through composite parametric surfaces as is the case for most CAD modelers. A challenging problem is how to generate a mesh of such a surface that well approximates the geometry of the surface, preserves its topology and important geometric features, and contains nicely shaped elements. In this work, we present an optimization-based surface remeshing method that is able to satisfy many of these requirements simultaneously. This method is inspired by the recent work of Levy and Bonneel (Proc. 21th International Meshing Roundtable, October 2012), which embeds a smooth surface into a high-dimensional space and remesh it uniformly in that embedding space. Our method works directly in the 3d spaces and uses an embedding space in R6 to evaluate mesh size and mesh quality. It generates a curvatureadapted anisotropic surface mesh that well represents the geometry of the surface with a low number of elements. We illustrate our approach through various examples
Dassi, F., Mola, A., Si, H. (2014). Curvature-adapted Remeshing of CAD Surfaces. PROCEDIA ENGINEERING, 82, 253-265 [10.1016/j.proeng.2014.10.388].
Curvature-adapted Remeshing of CAD Surfaces
DASSI, FRANCO;
2014
Abstract
A common representation of surfaces with complicated topology and geometry is through composite parametric surfaces as is the case for most CAD modelers. A challenging problem is how to generate a mesh of such a surface that well approximates the geometry of the surface, preserves its topology and important geometric features, and contains nicely shaped elements. In this work, we present an optimization-based surface remeshing method that is able to satisfy many of these requirements simultaneously. This method is inspired by the recent work of Levy and Bonneel (Proc. 21th International Meshing Roundtable, October 2012), which embeds a smooth surface into a high-dimensional space and remesh it uniformly in that embedding space. Our method works directly in the 3d spaces and uses an embedding space in R6 to evaluate mesh size and mesh quality. It generates a curvatureadapted anisotropic surface mesh that well represents the geometry of the surface with a low number of elements. We illustrate our approach through various examplesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.