The illuminant estimation has an important role in many domain applications such as digital still cameras and mobile phones, where the final image quality could be heavily affected by a poor compensation of the ambient illumination effects. In this paper we present an algorithm, not dependent on the acquiring device, for illuminant estimation and compensation directly in the color filter array (CFA) domain of digital still cameras. The proposed algorithm takes into account both chromaticity and intensity information of the image data, and performs the illuminant compensation by a diagonal transform. It works by combining a spatial segmentation process with empirical designed weighting functions aimed to select the scene objects containing more information for the light chromaticity estimation. This algorithm has been designed exploiting an experimental framework developed by the authors and it has been evaluated on a database of real scene images acquired in different, carefully controlled, illuminant conditions. The results show that a combined multi domain pixel analysis leads to an improvement of the performance when compared to single domain pixel analysis.
Schettini, R., Naccari, F., Gasparini, F., Bruna, A. (2006). Multidomain pixel analysis for illuminant estimation and compensation. In Digital Photography II, IS&T/SPIE Symposium on Electronic Imaging 2006 (pp.115-122). SPIE [10.1117/12.643766].
Multidomain pixel analysis for illuminant estimation and compensation
SCHETTINI, RAIMONDO;GASPARINI, FRANCESCA;
2006
Abstract
The illuminant estimation has an important role in many domain applications such as digital still cameras and mobile phones, where the final image quality could be heavily affected by a poor compensation of the ambient illumination effects. In this paper we present an algorithm, not dependent on the acquiring device, for illuminant estimation and compensation directly in the color filter array (CFA) domain of digital still cameras. The proposed algorithm takes into account both chromaticity and intensity information of the image data, and performs the illuminant compensation by a diagonal transform. It works by combining a spatial segmentation process with empirical designed weighting functions aimed to select the scene objects containing more information for the light chromaticity estimation. This algorithm has been designed exploiting an experimental framework developed by the authors and it has been evaluated on a database of real scene images acquired in different, carefully controlled, illuminant conditions. The results show that a combined multi domain pixel analysis leads to an improvement of the performance when compared to single domain pixel analysis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.