We compute the topological susceptibility of the SU(N) Yang–Mills theory in the large-N limit with a percent level accuracy. This is achieved by measuring the gradient-flow definition of the susceptibility at three values of the lattice spacing for N=3,4,5,6. Thanks to this coverage of parameter space, we can extrapolate the results to the large-N and continuum limits with confidence. Open boundary conditions are instrumental to make simulations feasible on the finer lattices at the larger N.

Cè, M., García Vera, M., Giusti, L., Schaefer, S. (2016). The topological susceptibility in the large-N limit of SU(N) Yang–Mills theory. PHYSICS LETTERS. SECTION B, 762, 232-236 [10.1016/j.physletb.2016.09.029].

The topological susceptibility in the large-N limit of SU(N) Yang–Mills theory

GIUSTI, LEONARDO
Penultimo
;
2016

Abstract

We compute the topological susceptibility of the SU(N) Yang–Mills theory in the large-N limit with a percent level accuracy. This is achieved by measuring the gradient-flow definition of the susceptibility at three values of the lattice spacing for N=3,4,5,6. Thanks to this coverage of parameter space, we can extrapolate the results to the large-N and continuum limits with confidence. Open boundary conditions are instrumental to make simulations feasible on the finer lattices at the larger N.
Articolo in rivista - Articolo scientifico
Large-N limit; Lattice field theory; Topological susceptibility;
Large-N limit; Lattice field theory; Topological susceptibility; Nuclear and High Energy Physics
English
232
236
5
Cè, M., García Vera, M., Giusti, L., Schaefer, S. (2016). The topological susceptibility in the large-N limit of SU(N) Yang–Mills theory. PHYSICS LETTERS. SECTION B, 762, 232-236 [10.1016/j.physletb.2016.09.029].
Cè, M; García Vera, M; Giusti, L; Schaefer, S
File in questo prodotto:
File Dimensione Formato  
scoap3-fulltext-15.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 368.52 kB
Formato Adobe PDF
368.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/142436
Citazioni
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 17
Social impact