We compute the topological susceptibility of the SU(N) Yang–Mills theory in the large-N limit with a percent level accuracy. This is achieved by measuring the gradient-flow definition of the susceptibility at three values of the lattice spacing for N=3,4,5,6. Thanks to this coverage of parameter space, we can extrapolate the results to the large-N and continuum limits with confidence. Open boundary conditions are instrumental to make simulations feasible on the finer lattices at the larger N.
Cè, M., García Vera, M., Giusti, L., & Schaefer, S. (2016). The topological susceptibility in the large-N limit of SU(N) Yang–Mills theory. PHYSICS LETTERS. SECTION B, 762, 232-236 [10.1016/j.physletb.2016.09.029].
Citazione: | Cè, M., García Vera, M., Giusti, L., & Schaefer, S. (2016). The topological susceptibility in the large-N limit of SU(N) Yang–Mills theory. PHYSICS LETTERS. SECTION B, 762, 232-236 [10.1016/j.physletb.2016.09.029]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | Si | |
Titolo: | The topological susceptibility in the large-N limit of SU(N) Yang–Mills theory | |
Autori: | Cè, M; García Vera, M; Giusti, L; Schaefer, S | |
Autori: | GIUSTI, LEONARDO (Penultimo) | |
Data di pubblicazione: | 2016 | |
Lingua: | English | |
Rivista: | PHYSICS LETTERS. SECTION B | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.physletb.2016.09.029 | |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
scoap3-fulltext-15.pdf | Publisher's version | Administrator Richiedi una copia |