We explore the possibility of computing fermionic correlators on the lattice by combining a domain decomposition with a multilevel integration scheme. The quark propagator is expanded in series of terms with a well-defined hierarchical structure. The higher the order of a term, the (exponentially) smaller its magnitude, the less local is its dependence on the gauge field. Once inserted in a Wick contraction, the gauge-field dependence of the terms in the resulting series can be factorized so that it is suitable for multilevel Monte Carlo integration. We test the strategy in quenched QCD by computing the disconnected correlator of two flavor-diagonal pseudoscalar densities, and a nucleon two-point function. In either case we observe a significant exponential increase of the signal-to-noise ratio.

Cè, M., Giusti, L., Schaefer, S. (2016). Domain decomposition, multilevel integration, and exponential noise reduction in lattice QCD. PHYSICAL REVIEW D, 93(9) [10.1103/PhysRevD.93.094507].

Domain decomposition, multilevel integration, and exponential noise reduction in lattice QCD

Cè, M;GIUSTI, LEONARDO
;
2016

Abstract

We explore the possibility of computing fermionic correlators on the lattice by combining a domain decomposition with a multilevel integration scheme. The quark propagator is expanded in series of terms with a well-defined hierarchical structure. The higher the order of a term, the (exponentially) smaller its magnitude, the less local is its dependence on the gauge field. Once inserted in a Wick contraction, the gauge-field dependence of the terms in the resulting series can be factorized so that it is suitable for multilevel Monte Carlo integration. We test the strategy in quenched QCD by computing the disconnected correlator of two flavor-diagonal pseudoscalar densities, and a nucleon two-point function. In either case we observe a significant exponential increase of the signal-to-noise ratio.
Articolo in rivista - Articolo scientifico
Nuclear and High Energy Physics
English
2016
93
9
094507
reserved
Cè, M., Giusti, L., Schaefer, S. (2016). Domain decomposition, multilevel integration, and exponential noise reduction in lattice QCD. PHYSICAL REVIEW D, 93(9) [10.1103/PhysRevD.93.094507].
File in questo prodotto:
File Dimensione Formato  
PhysRevD.93.094507-1.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 967.32 kB
Formato Adobe PDF
967.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/142434
Citazioni
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 32
Social impact