In this note we prove the existence of radially symmetric solutions for a class of fractional Schrödinger equations in ℝN of the form (-Δ)su + V (x)u = g(u), where the nonlinearity g does not satisfy the usual Ambrosetti-Rabinowitz condition. Our approach is variational in nature, and leans on a Pohozaev identity for the fractional laplacian.

Secchi, S. (2016). On fractional schrödinger equations in ℝN without the ambrosetti-rabinowitz condition. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 47(1), 19-41 [10.12775/TMNA.2015.090].

On fractional schrödinger equations in ℝN without the ambrosetti-rabinowitz condition

SECCHI, SIMONE
Primo
2016

Abstract

In this note we prove the existence of radially symmetric solutions for a class of fractional Schrödinger equations in ℝN of the form (-Δ)su + V (x)u = g(u), where the nonlinearity g does not satisfy the usual Ambrosetti-Rabinowitz condition. Our approach is variational in nature, and leans on a Pohozaev identity for the fractional laplacian.
Articolo in rivista - Articolo scientifico
Fractional laplacian; Pohozaev identity;
fractional Schrödinger equations
English
2016
47
1
19
41
reserved
Secchi, S. (2016). On fractional schrödinger equations in ℝN without the ambrosetti-rabinowitz condition. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 47(1), 19-41 [10.12775/TMNA.2015.090].
File in questo prodotto:
File Dimensione Formato  
v47n1-02-1226.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 463.74 kB
Formato Adobe PDF
463.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/140600
Citazioni
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 58
Social impact