The emergence and development of cancer is a consequence of the accumulation over time of genomic mutations involving a specific set of genes, which provides the cancer clones with a functional selective advantage. In this work, we model the order of accumulation of such mutations during the progression, which eventually leads to the disease, by means of probabilistic graphic models, i.e., Bayesian Networks (BNs). We investigate how to perform the task of learning the structure of such BNs, according to experimental evidence, adopting a global optimization meta-heuristics. In particular, in this work we rely on Genetic Algorithms, and to strongly reduce the execution time of the inference - which can also involve multiple repetitions to collect statistically significant assessments of the data - we distribute the calculations using both multi-threading and a multi-node architecture. The results show that our approach is characterized by good accuracy and specificity; we also demonstrate its feasibility, thanks to a 84× reduction of the overall execution time with respect to a traditional sequential implementation.

Ramazzotti, D., Nobile, M., Cazzaniga, P., Mauri, G., Antoniotti, M. (2016). Parallel implementation of efficient search schemes for the inference of cancer progression models. In 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (pp.1-6). Institute of Electrical and Electronics Engineers Inc. [10.1109/CIBCB.2016.7758109].

Parallel implementation of efficient search schemes for the inference of cancer progression models

Ramazzotti, D;NOBILE, MARCO SALVATORE
Secondo
;
MAURI, GIANCARLO
Penultimo
;
ANTONIOTTI, MARCO
Ultimo
2016

Abstract

The emergence and development of cancer is a consequence of the accumulation over time of genomic mutations involving a specific set of genes, which provides the cancer clones with a functional selective advantage. In this work, we model the order of accumulation of such mutations during the progression, which eventually leads to the disease, by means of probabilistic graphic models, i.e., Bayesian Networks (BNs). We investigate how to perform the task of learning the structure of such BNs, according to experimental evidence, adopting a global optimization meta-heuristics. In particular, in this work we rely on Genetic Algorithms, and to strongly reduce the execution time of the inference - which can also involve multiple repetitions to collect statistically significant assessments of the data - we distribute the calculations using both multi-threading and a multi-node architecture. The results show that our approach is characterized by good accuracy and specificity; we also demonstrate its feasibility, thanks to a 84× reduction of the overall execution time with respect to a traditional sequential implementation.
paper
Optimization, Lead, Bayes methods
English
IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2016
2016
2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)
9781467394727
2016
1
6
7758109
none
Ramazzotti, D., Nobile, M., Cazzaniga, P., Mauri, G., Antoniotti, M. (2016). Parallel implementation of efficient search schemes for the inference of cancer progression models. In 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (pp.1-6). Institute of Electrical and Electronics Engineers Inc. [10.1109/CIBCB.2016.7758109].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/140232
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
Social impact