Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.

Vago, R., Collico, V., Zuppone, S., Prosperi, D., Colombo, M. (2016). Nanoparticle-mediated delivery of suicide genes in cancer therapy. PHARMACOLOGICAL RESEARCH, 111, 619-641 [10.1016/j.phrs.2016.07.007].

Nanoparticle-mediated delivery of suicide genes in cancer therapy

COLLICO, VERONICA
Secondo
;
ZUPPONE, STEFANIA;PROSPERI, DAVIDE
Penultimo
;
COLOMBO, MIRIAM
2016

Abstract

Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.
Articolo in rivista - Review Essay
Active targeting; Cancer treatment; Nanovectors; Non-viral gene delivery; Suicide therapy; Toxins;
Active targeting; Cancer treatment; Nanovectors; Non-viral gene delivery; Suicide therapy; Toxins; Pharmacology
English
2016
111
619
641
none
Vago, R., Collico, V., Zuppone, S., Prosperi, D., Colombo, M. (2016). Nanoparticle-mediated delivery of suicide genes in cancer therapy. PHARMACOLOGICAL RESEARCH, 111, 619-641 [10.1016/j.phrs.2016.07.007].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/138708
Citazioni
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
Social impact