Rhodoliths are important marine carbonate producers that provide habitat for several marine organisms, and are threatened by ongoing global climate change. Meter-sized sedimentary patches rich in living rhodoliths, interspersed among corals, were discovered in the back reef of Ras Ghamila lagoon, Southern Sinai, at less than 1 m water depth. In this shallow and relatively sheltered subtropical environment, rhodoliths were found to be monospecific or oligospecific, spheroidal, 3.5 to 9.4 cm in maximum diameter, with warty/lumpy or fruticose (protuberance degree IV) growth forms, and corresponded to the unattached branches or praline type. They grew in bright light under seasonal, moderate, wind-driven water motion. The dominant rhodolith-forming species recorded were: Lithophyllum kotschyanum, Porolithon onkodes, Hydrolithon sp. and three species of Neogoniolithon: Neogoniolithon fosliei, Neogoniolithon brassica-florida, and an undescribed species noted in the text as Neogoniolithon sp. A total of 38 Alizarin-stained rhodoliths was released in the field and collected after 1 year. They showed different banding patterns (alternating long and short cells) that revealed seasonal growth, with the lowest rates occurring in winter for all species, and an additional summer growth slackening in Neogoniolithon fosliei. Lithophyllum kotschyanum presented evidence of occasional growth cessation, possibly due to temporary burial. The observed annual growth rate of rhodoliths was unrelated to their size. The mean accretion rates were 1.08 mm · year−1 in L. kotschyanum, 0.75 mm · year−1 in P. onkodes, 0.49 mm · year−1 in Hydrolithon sp., 0.85 mm mm · year−1 in N. fosliei, 0.63 mm · year−1 in N. brassica-florida and 0.57 mm · year−1 in Neogoniolithon sp. The annual mean marginal elongation rate for these taxa was respectively 8.74, 13.92, 3.59, 9.40 and 9.25 mm · year−1, with the exception of Neogoniolithon sp., for which this parameter was not recorded. Maximum marginal elongation occurred in P. onkodes pointing out its greater ability as a space competitor in comparison with the other rhodolith species. The highest accretion rate and common presence of L. kotschyanum indicate its importance as carbonate producer in tropical reef.

Caragnano, A., Basso, D., Rodondi, G. (2016). Growth rates and ecology of coralline rhodoliths from the Ras Ghamila back reef lagoon, Red Sea. MARINE ECOLOGY, 37(4), 713-726 [10.1111/maec.12371].

Growth rates and ecology of coralline rhodoliths from the Ras Ghamila back reef lagoon, Red Sea

CARAGNANO, ANNALISA
;
BASSO, DANIELA MARIA
Secondo
;
2016

Abstract

Rhodoliths are important marine carbonate producers that provide habitat for several marine organisms, and are threatened by ongoing global climate change. Meter-sized sedimentary patches rich in living rhodoliths, interspersed among corals, were discovered in the back reef of Ras Ghamila lagoon, Southern Sinai, at less than 1 m water depth. In this shallow and relatively sheltered subtropical environment, rhodoliths were found to be monospecific or oligospecific, spheroidal, 3.5 to 9.4 cm in maximum diameter, with warty/lumpy or fruticose (protuberance degree IV) growth forms, and corresponded to the unattached branches or praline type. They grew in bright light under seasonal, moderate, wind-driven water motion. The dominant rhodolith-forming species recorded were: Lithophyllum kotschyanum, Porolithon onkodes, Hydrolithon sp. and three species of Neogoniolithon: Neogoniolithon fosliei, Neogoniolithon brassica-florida, and an undescribed species noted in the text as Neogoniolithon sp. A total of 38 Alizarin-stained rhodoliths was released in the field and collected after 1 year. They showed different banding patterns (alternating long and short cells) that revealed seasonal growth, with the lowest rates occurring in winter for all species, and an additional summer growth slackening in Neogoniolithon fosliei. Lithophyllum kotschyanum presented evidence of occasional growth cessation, possibly due to temporary burial. The observed annual growth rate of rhodoliths was unrelated to their size. The mean accretion rates were 1.08 mm · year−1 in L. kotschyanum, 0.75 mm · year−1 in P. onkodes, 0.49 mm · year−1 in Hydrolithon sp., 0.85 mm mm · year−1 in N. fosliei, 0.63 mm · year−1 in N. brassica-florida and 0.57 mm · year−1 in Neogoniolithon sp. The annual mean marginal elongation rate for these taxa was respectively 8.74, 13.92, 3.59, 9.40 and 9.25 mm · year−1, with the exception of Neogoniolithon sp., for which this parameter was not recorded. Maximum marginal elongation occurred in P. onkodes pointing out its greater ability as a space competitor in comparison with the other rhodolith species. The highest accretion rate and common presence of L. kotschyanum indicate its importance as carbonate producer in tropical reef.
Articolo in rivista - Articolo scientifico
Accretion rate; calcareous red algae; free-living Corallinales; Gulf of Aqaba; marginal growth; Sinai;
Accretion rate; calcareous red algae; free-living Corallinales; Gulf of Aqaba; marginal growth; Sinai;
English
713
726
14
Caragnano, A., Basso, D., Rodondi, G. (2016). Growth rates and ecology of coralline rhodoliths from the Ras Ghamila back reef lagoon, Red Sea. MARINE ECOLOGY, 37(4), 713-726 [10.1111/maec.12371].
Caragnano, A; Basso, D; Rodondi, G
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/138257
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
Social impact