When vision and proprioception are rendered incongruent during a hand localisation task, vision is initially weighted more than proprioception in determining location, and proprioception gains more weighting over time. However, it is not known whether, under these incongruency conditions, particular areas of space are also weighted more heavily than others, nor whether explicit knowledge of the sensory incongruence (i.e. disconfirming the perceived location of the hand) modulates the effect. Here, we hypothesised that both non-informative inputs coming from one side of space and explicit knowledge of sensory incongruence would modulate perceived location of the limb. Specifically, we expected spatial weighting to shift hand localisation towards the weighted area of space, and we expected greater weighting of proprioceptive input once perceived location was demonstrated to be inaccurate. We manipulated spatial weighting using an established auditory cueing paradigm (Experiment 1, n = 18) and sensory incongruence using the 'disappearing hand trick' (Experiment 2, n = 9). Our first hypothesis was not supported-spatial weighting did not modulate hand localisation. Our second hypothesis was only partially supported-disconfirmation of hand position did lead to more accurate localisations, even if participants were still unaware of their hand position. This raised the possibility that rather than disconfirmation, a simple movement of the hand in view could update the sensory-motor system, by immediately increasing the weighting of proprioceptive input relative to visual input. This third hypothesis was then confirmed (Experiment 3, n = 9). These results suggest that hand localisation is robust in the face of differential weighting of space, but open to modulation in a modality-specific manner, when one sense (vision) is rendered inaccurate

Bellan, V., Gilpin, H., Stanton, T., Dagsdottir, L., Gallace, A., Moseley, G. (2017). Relative contributions of spatial weighting, explicit knowledge and proprioception to hand localisation during positional ambiguity. EXPERIMENTAL BRAIN RESEARCH, 235(2), 447-455 [10.1007/s00221-016-4782-6].

Relative contributions of spatial weighting, explicit knowledge and proprioception to hand localisation during positional ambiguity

GALLACE, ALBERTO;
2017

Abstract

When vision and proprioception are rendered incongruent during a hand localisation task, vision is initially weighted more than proprioception in determining location, and proprioception gains more weighting over time. However, it is not known whether, under these incongruency conditions, particular areas of space are also weighted more heavily than others, nor whether explicit knowledge of the sensory incongruence (i.e. disconfirming the perceived location of the hand) modulates the effect. Here, we hypothesised that both non-informative inputs coming from one side of space and explicit knowledge of sensory incongruence would modulate perceived location of the limb. Specifically, we expected spatial weighting to shift hand localisation towards the weighted area of space, and we expected greater weighting of proprioceptive input once perceived location was demonstrated to be inaccurate. We manipulated spatial weighting using an established auditory cueing paradigm (Experiment 1, n = 18) and sensory incongruence using the 'disappearing hand trick' (Experiment 2, n = 9). Our first hypothesis was not supported-spatial weighting did not modulate hand localisation. Our second hypothesis was only partially supported-disconfirmation of hand position did lead to more accurate localisations, even if participants were still unaware of their hand position. This raised the possibility that rather than disconfirmation, a simple movement of the hand in view could update the sensory-motor system, by immediately increasing the weighting of proprioceptive input relative to visual input. This third hypothesis was then confirmed (Experiment 3, n = 9). These results suggest that hand localisation is robust in the face of differential weighting of space, but open to modulation in a modality-specific manner, when one sense (vision) is rendered inaccurate
Articolo in rivista - Articolo scientifico
Body representation; Hand localisation; Proprioception; Self-localisation
English
2017
235
2
447
455
none
Bellan, V., Gilpin, H., Stanton, T., Dagsdottir, L., Gallace, A., Moseley, G. (2017). Relative contributions of spatial weighting, explicit knowledge and proprioception to hand localisation during positional ambiguity. EXPERIMENTAL BRAIN RESEARCH, 235(2), 447-455 [10.1007/s00221-016-4782-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/137441
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
Social impact