Methylation is one of the most important epigenetic mechanisms in eukaryotes. As a consequence of cytosine methylation, the binding of proteins that are implicated in transcription to gene promoters is severely hindered, which results in gene regulation and, eventually, gene silencing. To date, the mechanisms by which methylation biases the binding affinities of proteins to DNA are not fully understood; however, it has been proposed that changes in double-strand conformations, such as stretching, bending, and over-twisting, as well as local variations in DNA stiffness/flexibility may play a role. The present work investigates, at the single molecule level, the morphological consequences of DNA methylation in vitro. By tracking the atomic force microscopy images of single DNA molecules, we characterize DNA conformations pertaining to two different degrees of methylation. In particular, we observe that methylation induces no relevant variations in DNA contour lengths, but produces measurable incremental changes in persistence lengths. Furthermore, we observe that for the methylated chains, the statistical distribution of angles along the DNA coordinate length is characterized by a double exponential decay, in agreement with what is predicted for polyelectrolytes. The results reported herein support the claim that the biological consequences of the methylation process, specifically difficulties in protein-DNA binding, are at least partially due to DNA conformation modifications.

Cassina, V., Manghi, M., Salerno, D., Tempestini, A., Iadarola, V., Nardo, L., et al. (2016). Effects of cytosine methylation on DNA morphology: An atomic force microscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1860(1), 1-7 [10.1016/j.bbagen.2015.10.006].

Effects of cytosine methylation on DNA morphology: An atomic force microscopy study

CASSINA, VALERIA
Primo
;
SALERNO, DOMENICO;TEMPESTINI, ALESSIA;NARDO, LUCA;BRIOSCHI, SIMONE
Penultimo
;
MANTEGAZZA, FRANCESCO
Ultimo
2016

Abstract

Methylation is one of the most important epigenetic mechanisms in eukaryotes. As a consequence of cytosine methylation, the binding of proteins that are implicated in transcription to gene promoters is severely hindered, which results in gene regulation and, eventually, gene silencing. To date, the mechanisms by which methylation biases the binding affinities of proteins to DNA are not fully understood; however, it has been proposed that changes in double-strand conformations, such as stretching, bending, and over-twisting, as well as local variations in DNA stiffness/flexibility may play a role. The present work investigates, at the single molecule level, the morphological consequences of DNA methylation in vitro. By tracking the atomic force microscopy images of single DNA molecules, we characterize DNA conformations pertaining to two different degrees of methylation. In particular, we observe that methylation induces no relevant variations in DNA contour lengths, but produces measurable incremental changes in persistence lengths. Furthermore, we observe that for the methylated chains, the statistical distribution of angles along the DNA coordinate length is characterized by a double exponential decay, in agreement with what is predicted for polyelectrolytes. The results reported herein support the claim that the biological consequences of the methylation process, specifically difficulties in protein-DNA binding, are at least partially due to DNA conformation modifications.
Articolo in rivista - Articolo scientifico
Atomic force microscopy (AFM); DNA methylation; Persistence length;
Atomic force microscopy (AFM); DNA methylation; Persistence length; Cytosine; Microscopy, Atomic Force; DNA Methylation; Nucleic Acid Conformation; Biophysics; Biochemistry; Medicine (all); Molecular Biology
English
2016
1860
1
1
7
partially_open
Cassina, V., Manghi, M., Salerno, D., Tempestini, A., Iadarola, V., Nardo, L., et al. (2016). Effects of cytosine methylation on DNA morphology: An atomic force microscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1860(1), 1-7 [10.1016/j.bbagen.2015.10.006].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0304416515002706-main.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Effects of cytosine methylation on DNA morphology- an AFM study_Cassina_RevisedUnmarked.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/135581
Citazioni
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
Social impact