We propose a new self-adaptive image cropping algorithm where the processing steps are driven by the classification of the images into semantic classes. The algorithm exploits both visual and semantic information. Visual information is obtained from a visual attention model, while semantic information relates to the automatically assigned image genre and to the detection of face and skin regions.

Schettini, R., Gasparini, F., Cusano, C., Ciocca, G. (2007). Self-Adaptive Image Cropping for Small Displays. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 53(4), 1622-1627 [10.1109/TCE.2007.4429261].

Self-Adaptive Image Cropping for Small Displays

SCHETTINI, RAIMONDO;GASPARINI, FRANCESCA;CUSANO, CLAUDIO;CIOCCA, GIANLUIGI
2007

Abstract

We propose a new self-adaptive image cropping algorithm where the processing steps are driven by the classification of the images into semantic classes. The algorithm exploits both visual and semantic information. Visual information is obtained from a visual attention model, while semantic information relates to the automatically assigned image genre and to the detection of face and skin regions.
Articolo in rivista - Articolo scientifico
Adaptive image cropping; Face detection; Image classification; Image rendering; Skin detection; Small displays;
English
2007
53
4
1622
1627
none
Schettini, R., Gasparini, F., Cusano, C., Ciocca, G. (2007). Self-Adaptive Image Cropping for Small Displays. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 53(4), 1622-1627 [10.1109/TCE.2007.4429261].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/13433
Citazioni
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 53
Social impact