The subdegrees of a transitive permutation group are the orbit lengths of a point stabilizer. For a finite primitive permutation group which is not cyclic of prime order, the largest subdegree shares a non-trivial common factor with each non-trivial subdegree. On the other hand, it is possible for non-trivial subdegrees of primitive groups to be coprime, a famous example being the rank 5 action of the small Janko group J1 on 266 points which has subdegrees of lengths 11 and 12. We prove that, for every finite primitive group, the maximal size of a set of pairwise coprime non-trivial subdegrees is at most 2.
Dolfi, S., Guralnick, R., Praeger, C., & Spiga, P. (2016). On the maximal number of coprime subdegrees in finite primitive permutation groups. ISRAEL JOURNAL OF MATHEMATICS, 216(1), 107-147 [10.1007/s11856-016-1405-7].
Citazione: | Dolfi, S., Guralnick, R., Praeger, C., & Spiga, P. (2016). On the maximal number of coprime subdegrees in finite primitive permutation groups. ISRAEL JOURNAL OF MATHEMATICS, 216(1), 107-147 [10.1007/s11856-016-1405-7]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | Si | |
Titolo: | On the maximal number of coprime subdegrees in finite primitive permutation groups | |
Autori: | Dolfi, S; Guralnick, R; Praeger, C; Spiga, P | |
Autori: | SPIGA, PABLO (Corresponding) | |
Data di pubblicazione: | 2016 | |
Lingua: | English | |
Rivista: | ISRAEL JOURNAL OF MATHEMATICS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11856-016-1405-7 | |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Coprime2.pdf | N/A | Administrator Richiedi una copia |