Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a−1. A Cayley graph Γ = Cay(A,S) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.

Dobson, E., Spiga, P., Verret, G. (2016). Cayley graphs on abelian groups. COMBINATORICA, 36(4), 371-393 [10.1007/s00493-015-3136-5].

Cayley graphs on abelian groups

SPIGA, PABLO
Secondo
;
2016

Abstract

Let A be an abelian group and let ι be the automorphism of A defined by: ι: a ↦ a−1. A Cayley graph Γ = Cay(A,S) is said to have an automorphism group as small as possible if Aut(Γ)=A⋊<ι>. In this paper, we show that almost all Cayley graphs on abelian groups have automorphism group as small as possible, proving a conjecture of Babai and Godsil.
Articolo in rivista - Articolo scientifico
05E18; 20B25;
05E18; 20B25; Discrete Mathematics and Combinatorics; Computational Mathematics
English
371
393
23
Dobson, E., Spiga, P., Verret, G. (2016). Cayley graphs on abelian groups. COMBINATORICA, 36(4), 371-393 [10.1007/s00493-015-3136-5].
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs00493-015-3136-5.pdf

Solo gestori archivio

Dimensione 505.7 kB
Formato Adobe PDF
505.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/133255
Citazioni
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
Social impact