Let G be a finite non-abelian simple group and let p be a prime. We classify all pairs (G,p) such that the sum of the complex irreducible character degrees of G is greater than the index of a Sylow p-subgroup of G. Our classification includes all groups of Lie type in defining characteristic p (because every Gelfand-Graev character of G is multiplicity free and has degree equal to the above index), and a handful of well-described examples
Spiga, P., & Zalesski, A. (2014). A uniform upper bound for the character degree sums and Gelfand-Graev-like characters for finite simple groups. In R.F. Morse, D. NikolovaPopova, & S. Witherspoon (a cura di), Group Theory, Combinatorics and Computing (pp. 169-187). Providence : American Mathematical Society.
Citazione: | Spiga, P., & Zalesski, A. (2014). A uniform upper bound for the character degree sums and Gelfand-Graev-like characters for finite simple groups. In R.F. Morse, D. NikolovaPopova, & S. Witherspoon (a cura di), Group Theory, Combinatorics and Computing (pp. 169-187). Providence : American Mathematical Society. | |
Titolo: | A uniform upper bound for the character degree sums and Gelfand-Graev-like characters for finite simple groups | |
Autori: | Spiga, P; Zalesski, A | |
Autori: | SPIGA, PABLO (Primo) ZALESSKI, ALEXANDRE (Ultimo) | |
Presenza di un coautore afferente ad Istituzioni straniere: | No | |
Tipo: | Capitolo o saggio | |
Carattere della pubblicazione: | Scientifica | |
Data di pubblicazione: | 2014 | |
Lingua: | English | |
Titolo del libro: | Group Theory, Combinatorics and Computing | |
ISBN: | 978-0-8218-9435-4 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1090/conm/611/12158 | |
Appare nelle tipologie: | 03 - Contributo in libro |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Revisited2013_05_27.pdf | N/A | Administrator Richiedi una copia |