In this paper we prove an Erdös-Ko-Rado-type theorem for intersecting sets of permutations. We show that an intersecting set of maximal size in the projective general linear group PGL3(q), in its natural action on the points of the projective line, is either a coset of the stabilizer of a point or a coset of the stabilizer of a line. This gives the first evidence for the veracity of Conjecture 2 from K. Meagher and P. Spiga, An Erdös-Ko-Rado Theorem for the Derangement Graph of PGL(2, q) Acting on the Projective Line [J. Combin. Theory Ser. A, 118 (2011), pp. 532-544]. © 2014 Society for Industrial and Applied Mathematics.
Meagher, K., & Spiga, P. (2014). An erdös-ko-rado theorem for the derangement graph of PGL3(q) acting on the projective plane. SIAM JOURNAL ON DISCRETE MATHEMATICS, 28(2), 918-941.
Citazione: | Meagher, K., & Spiga, P. (2014). An erdös-ko-rado theorem for the derangement graph of PGL3(q) acting on the projective plane. SIAM JOURNAL ON DISCRETE MATHEMATICS, 28(2), 918-941. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Presenza di un coautore afferente ad Istituzioni straniere: | Si |
Titolo: | An erdös-ko-rado theorem for the derangement graph of PGL3(q) acting on the projective plane |
Autori: | Meagher, K; Spiga, P |
Autori: | SPIGA, PABLO (Corresponding) |
Data di pubblicazione: | 2014 |
Lingua: | English |
Rivista: | SIAM JOURNAL ON DISCRETE MATHEMATICS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1137/13094075X |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
13094075x.pdf | N/A | Administrator Richiedi una copia |